Code: 20CS3301, 20IT3301

II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2022

FUNDAMENTALS OF DIGITAL LOGIC DESIGN

(Common for CSE, IT)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks
		UNIT-I			
1	a)	Solve the binary arithmetic operations on (-14) - (-2) using signed 2's complement	L3	CO1	7 M
		representation.			
	b)	Determine the equivalent number in base	L3	CO1	7 M
		10, base 3, base 16 and base 2 of a given			
		number $(127.75)_8$.			
		OR			
2	a)	Use 2's complement form to deduct.	L3	CO1	7 M
		i) 1101010 - 110100			
		ii) 10011.1101 - 101.11			
	b)	Find the following to the required form.	L3	CO1	7 M
		i) $(A98B)_{12} = ()_3$			
		$(38.65)_{10} = ()_2$			

		UNIT-II			
3	a)	State and Prove the Huntington postulates of	L3	CO2	7 M
		Boolean Algebra.			
	b)	Simplify the following expression to sum of	L3	CO2	7 M
		products using Tabulation Method:			
		$F(a, b, c, d) = \sum m(0,4,8,10,12,13,15) + d(1,2)$			
		OR			
4	a)	Reduce the following Boolean expressions	L3	CO2	7 M
		using theorems and identities.			
		i) F = C + AB + AD(B + C) + CD			
		ii) $F = AB + CDB + ACD$			
	b)	Simplify the following expression using the	L3	CO2	7 M
		K-map:			
		Y = A'B'C' + AC'D' + AB' + ABCD' + A'B'C			
		UNIT-III			
5	a)	Draw the logic circuit of a 3 to 8 decoder	L2	CO3	7 M
		and explain its working.			
	b)	Explain the working of a De-multiplexer	L2	CO3	7 M
		with the help of an example.			
		OR			
6	a)	Design a Full Adder circuit using Decoder	L3	CO3	7 M
		and logic gates.			
	b)	Discuss in detail about the design procedure	L3	CO3	7 M
		for 4 bit binary parallel adder with diagram.			

		UNIT-IV			
7	a)	Explain how to convert S-R flip flop into	L3	CO4	7 M
		JK-flip flop. Draw and explain the logic			
		diagram.			
	b)	Develop the characteristic equation for JK-	L3	CO4	7 M
		flip flop.			
		OR			
8	a)	Explain how to convert SR flip-flop to T	L2	CO4	7 M
		flip-flop.			
	b)	Construct a JK flip-flop using D flip-flop,	L4	CO4	7 M
		multiplexer and an inverter.			
		UNIT-V			
9	a)	Explain the operation of 4 bit universal shift	L2	CO5	7 M
		register with a neat logic diagram.			
	b)	Write the differences between synchronous	L3	CO5	7 M
		and asynchronous counters.			
		OR			
10	a)	Design a synchronous counter to generate	L4	CO5	7 M
		the sequence 0,1,2,3,5,8 and repeat the			
		sequence using T flip-flops.			
	b)	Write the characteristic, excitation tables for	L3	CO5	7 M
		JK, RS, T and D flip-flops.			